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A bubbly gas–bubbly oil flow pattern may occur when water, heavy oil and gas flow simultaneously in
vertical pipes in such a way that water is the continuous phase. In this work, a one-dimensional, thermal,
transient two-fluid mathematical model, for such flow, is presented. The model consists of mass, momen-
tum and energy conservation equations for every phase whose numerical solution is based on the finite
difference technique in the implicit scheme. The model is able to predict pressure, temperature, volumet-
ric fraction and velocity profiles. For accurate modeling of multiphase flows, the key issue is to specify the
adequate closure relationships, thus drag and virtual mass forces for the gas and oil phases were taken
into account and special attention was paid on the gas–oil drag force. When this force was included into
the model it was found that: (1) such force had the same order of magnitude than the oil drag force and
both forces were smaller than the gas drag force, (2) the pressure, gas and oil velocities and gas and oil
volume fraction profiles were affected, (3) the numerical stability was increased. The model predictions
are in agreement with experimental data reported in literature.

� 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

Heavy oil–water–gas three-phase flow often occurs in the
petroleum industry, for example, in onshore and offshore hydro-
carbon production and transportation. Reasons for such occurrence
are: (1) water is very often present in the reservoirs (i.e. connate
water) and accompanies the produced oil and natural gas, which
ll rights reserved.

hotmail.com (O. Cazarez).
arises naturally from the reservoir and (2) water is produced due
to water injection in the reservoir at a later stage of the production.
Knowledge on the heavy oil–water–gas flow characteristics, such
as flow patterns, pressure drop and holdups, can have significant
impact on the proper design and operation of pipelines and on
many flow assurance issues including hydrate formation, emul-
sion, wax deposition and corrosion (Zhang and Sarica, 2005).
Therefore, it is necessary to develop mathematical models for the
prediction of heavy oil–water–gas pipe flow behavior under differ-
ent conditions.

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2010.01.006
mailto:ocazarez@imp.mx
mailto:cazarez_oct@hotmail.com
http://www.sciencedirect.com/science/journal/03019322
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It is known that two-phase gas–liquid flows are highly com-
plex, then, it is apparent that the addition of a third phase will
increase this complexity. The major difference, between two-
and three-phase flows, is that the presence of two immiscible
liquids gives rise to a wider variety of flow patterns, which de-
pend on the flow rate, thermo-physical properties of the fluids,
inclination angle and diameter of the pipe. For example, Woods
et al. (1998) used a Finavestan A 50 B oil, air and water and
identified nine flow patterns, while Speeding et al. (2000) using
the same fluids identified two new flow regimes. Oddie et al.
(2003) observed six flow patterns when they used kerosene,
nitrogen and water. However, Viera (2004) and Bannwart et al.
(2005) observed six new flow patterns when heavy oil, gas and
water flow simultaneously through a circular pipe in such a
way that water is the continuous phase. On the other hand,
the hydrodynamic modeling of three-phase flow is based on flow
pattern definitions; more flow patterns imply more discontinu-
ities and greater complexity in the hydrodynamic models. In
the literature there is few information about three-phase flow
of oil–water–gas mixtures. When the liquids and gas flow sepa-
rately, three flow models are used to simulate the flow (Khor
et al., 1997; Taitel et al., 1995; Ghorai et al., 2005). For example,
Ghorai et al. (2005) used a steady-state two-fluid model to mod-
el a three-phase (light oil–water–gas) stratified flow in pipes.
They assumed that oil is lighter that water and therefore, it flows
in the middle of water and gas. However, when one or two of the
phases are dispersed into another, it is necessary to do some
suppositions. In general, because three-phase flow models are
lacking, one treatment for three-phase flow is to combine oil
and water into a single liquid phase and then modeling the sys-
tem as a two-phase liquid–gas flow. In this treatment, the slip
between the oil and water is ignored and a homogeneous mix-
ture is assumed for the liquid phase (Shi et al., 2004; Zhang
and Sarica, 2005; Bonizzi and Issa, 2003). For example, Bonizzi
and Issa (2003) simulated three-phase (liquid–liquid–gas) strati-
fied and slug flows. They used the one-dimensional transient
two-fluid model in which the continuity and momentum equa-
tions for the two liquids (light oil and water) were combined to-
gether to obtain a new equation in terms of liquid mixture
quantities.

Another treatment, of the three-phase flow, is to consider oil,
water and gas as one liquid phase with mixture properties, this al-
ways that the bubbly flow is present. For example, regarding heavy
oil–water–gas flow, Cazarez-Candia et al. (2009) proposed a homo-
geneous model to predict pressure, velocity and temperature of the
mixture for the bubbly gas–bubbly oil flow. However, the model is
no able to predict the parameter mentioned neither the volumetric
fraction for each phase.

In the present investigation, a two-fluid transient, thermal,
mathematical model is presented, the one which is able to predict
pressure, volumetric fraction, temperature and velocity profiles for
Oil drops 

water 

Gas bubbles 

Flow

D goF DoFD gF

0wτ ≠

Fig. 1. Bubbly oil–bubbly gas three-phase flow [modified from Bannwart et al.
(2005)].
each phase when oil, water and gas flow simultaneously under the
flow pattern known as bubbly gas–bubbly oil (Fig. 1). Regarding
the closure relationships, special attention was paid upon the gas
and oil virtual mass force, because this force conditionally stabi-
lizes the numerical scheme (Lahey et al., 1980; Chung and Lee,
2001; Hatta et al., 1998; Linè and Leon-Becerril, 2001). Due to
the absence, in literature, of expressions for the drag force trans-
ferred from the continuous phase to heavy oil drops ðFDoÞ the drag
force transferred from a continuous phase to solid particles (Mic-
hele and Hempel, 2002) was used. The gas–oil drag force ðFDgoÞ,
gas drag force ðFDgÞ and mixture-wall friction shear stress (sw)
were also included into the model (Mitra-Majumdar et al., 1997,
1998; Wang et al., 2006; Padial et al., 2000; Schallenberg et al.,
2005; Michele and Hempel, 2002).
2. Governing equations

In this work, the effects of breakup and coalescence of droplets
and bubbles are neglected. The gas-wall and the oil-wall friction
shear stresses (swg, swo) were ignored and a mixture-wall friction
shear stress (sw) was used (Cazarez-Candia et al., 2009) at the
place of a water-wall friction shear stress (Fig. 1). The drag and
virtual mass forces were the only interfacial forces considered
and it was supposed that the pressure in all phases are the same
in a computational cell (P = Pg = Po = Pw). Water and oil were trea-
ted as incompressible phases; however, the compressibility of the
gas phase was taken into account. Mass transfer effects or chem-
ical reactions have been neglected as well as the heat transfer
among phases and between the flow and the wall-pipe. Then,
the conservation equations of mass, momentum and energy for
each phase in bubbly oil–bubbly gas three-phase flow are given
by:

(i) Mass equations
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(iii) Energy equations
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where P is pressure, T is temperature, g is the acceleration due to
gravity, q is density, v is velocity, e is volumetric fraction, h is incli-
nation angle, u = h + 90�, Sw is water-wall wetted perimeter, A is the
cross sectional area of the pipe, Cg is gas sound velocity, Cp is heat
capacity, t and z are temporal and spatial coordinates, respectively,
and Fvm is virtual mass force. The subscripts g, o and w represent
gas, oil and water, respectively. Additionally, the following relations
must be satisfied:

P ¼ qgRTg ð10Þ

eg þ eo þ ew ¼ 1 ð11Þ

where R is the gas constant. In order to solve the system of Eqs. (1)–
(11), it is indispensable to formulate appropriate closure relation-
ships that permit modeling the interaction between phases. The
closure relationships appearing in Eqs. (4)–(6) are described in
Appendix A. The complete description for obtaining Eqs. (4)–(6) is
presented in Appendix B.

O. Cazarez et al. / International Journa
Table 1
Model stability region for different flow conditions.

Curve vsg (m/s) vso (m/s) vsw (m/s) eg eo eg/eo

h 0.042 0.02 0.5 0.17681096 0.0356 4.9666
I 0.06 0.02 0.3 0.17657821 0.0526 3.3578
4 0.048 0.04 0.5 0.17652814 0.0681 2.5921
s 0.041 0.04 0.3 0.17622005 0.1051 1.6781
} 0.05 0.07 0.5 0.17613529 0.1129 1.5601
3. Characteristics analysis

A two-fluid model for a two-phase bubbly flow is conditionally
hyperbolic and therefore can be well-posed as an initial-value
problem (Drew et al., 1979; No and Kasimi, 1985; Pauchon and
Banerjee, 1986; Ruggles and Lahey, 1988; Espinosa-Paredes and
Soria, 1998; Park et al., 1998). Then, the task here is to investigate
the nature of the proposed model, and to establish whether the
system is conditionally well-posed. In what follows, a study of
the characteristics for the proposed set of equations is carried out.

In this work, only for the purpose of the characteristics analysis,
the equations for the two liquids (oil and water) were combined to
obtain the equations in terms of liquid mixture quantities. The
modified system of equations is given by Eqs. (1), (12), (4), (13),
(7) and (14):
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The modified system of equations is a system of first order par-

tial differential equations that can be written in a compact form as:
A
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where A and B are coefficient matrices, C is a vector containing all
algebraic terms and u is the solution vector given by:

u ¼ ðP; em; vg ;vm; Tg ; TmÞT ð16Þ

where the superscript T is used to indicate the transpose. The math-
ematical character of a set of partial differential equations is pro-
vided by the solution of the following eigenvalue system (Hirsch,
1988):

det½Ak� B� ¼ 0 ð17Þ

Making an order of magnitude analysis on terms in the determi-
nant of Eq. (17), it was considered that qgC2

g � eg , then, the follow-
ing characteristic roots were obtained:
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where Cg is the speed of sound into the gas phase.
In a dimensionless way k can be written as:

k� ¼ k� vm

vg � vm
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In Eq. (18) u01 and u02 are given by:

u01 ¼ ð1� emÞ½egqwCvmg � qm� ð20Þ

u02 ¼ ðqwCvmg � qgemÞ ð21Þ

From a mathematical point of view a system with real charac-
teristics represents a well-posed initial-value problem and from a
stability point of view the model is stable between the ranges of
real characteristics. From Eq. (18), the only one condition for get-
ting real characteristic values is when:
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Eq. (19) and the data given in Table 1 were used to calculate k�

(Fig. 2). It is interesting to note that the well-posed region de-
creases as the gas–oil volumetric fraction ratio decreases. From a
physical point of view, this probably occurs because when the oil
volumetric fraction increases, the coalescence phenomenon in
the oil droplets begins, taking place a flow pattern transition and
consequently another flow patterns may appear.

On the other hand, it is well-known that the virtual mass force
conditionally stabilizes the numerical scheme, for such force a vir-
tual coefficient is required. Then, the gas virtual coefficient, Cvmg,
(see Appendix A) was calculated and its effect on the dimension-
less characteristics was analyzed (Fig. 3). In this case gas, oil and
water superficial velocities ðv sg ;vso;v swÞ with values of 0.05, 0.07
and 0.5 m/s were used.

Fig. 3 shows that the Eq. (22) is satisfied when: (1) the eigen-
values are always real in the interval 0 < eg < 0:176 for different
flow conditions and (2) the dimensionless characteristics of the
system also vary for different values of Cvmg. Interestingly, a nota-
ble diminution in the well-posed region was observed when the



Fig. 3. Dimensionless characteristics for different values of Cvmg.

Fig. 2. Effect of oil volumetric fraction on the well-posed region.
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values of Cvmg are increased. In this work, the pressure, velocity,
void fraction and temperature profiles were obtained using a Cvmg

calculated from the relations proposed by Ransam et al. (1981),
(Eq. (A-11) from Appendix A), whereas a value of 0.5 was used
for the oil virtual mass coefficient (Cvmo).
Fig. 4. Three-phase pressure gradient as a function of the gas–oil ratio.
4. Numerical solution

There are several numerical methods to solve partial differential
equations, such as finite difference methods, finite element meth-
ods and finite volume methods. The finite difference technique is
far more widely used than any other technique. This technique is
implemented by replacing all derivatives by difference quotients.
When the geometry is not complicated like the case of pipes, the
finite difference method is easier and faster than other methods.
Discretization of Eqs. (1)–(9) was obtained applying a first order
downstream implicit scheme for spatial derivatives and a first or-
der upstream implicit scheme for time derivatives. The concept
of donor cell is used for parameter lumping purposes. It states that
the fluid exit conditions are the same as the fluid conditions in the
node itself. Stability of numerical solutions is improved using this
concept. The Eqs. (1)–(9), in discretized form can be written in ma-
trix form as:

Djðvo
j ÞvtþDt

j ¼ Ej vo
j ;v

t
j ;v

tþDt
j�1

� �
ð23Þ

where, the superscripts t and t + Dt indicate that the dependent
variables are calculated at the old and new times, respectively,
and j is the cell number, where the variable is calculated. In Eq.
(23), the variables with subscript j � 1 and superscript t are known
since these are the inlet variables and the initial condition, respec-
tively. Also in these equations, the superscript o represents the
dummy variables for the iterative method, D is the coefficient ma-
trix, E is the independent vector and v is a column vector of depen-
dent variables given by:

v ¼ P; eo; ew;vg ;vo;vw; Tg ; To; Tw
	 
T ð24Þ

where the superscript T is used to indicate the transpose.
The numerical solution of Eq. (23) was obtained using the LIN-

PACK (Dongarra et al., 1990) package of numerical routines for
solving simultaneous linear equations. The algorithm used in this
study is based on the factorization of a matrix using a version of
the Gaussian elimination with partial pivoting. The methodology
used to obtain the numerical solution of Eq. (23), is similar to that
presented in the work of Cazarez-Candia and Vazquez-Cruz (2005).
5. Results and discussion

The model is able to predict velocity, temperature, volumetric
fraction and pressure profiles. The model was validated using the
experimental data given by Bannwart et al. (2005), whose experi-
ments were carried out using a crude dead heavy oil of 971 kg/m3

with a viscosity of 5040 mPa s and a 2.84 cm i.d. and 2.5 m long
vertical glass tubing. The experiments took place at ambient tem-
perature and near atmospheric pressure. Bannwart et al. (2005)
presented five different flow conditions at which the bubbly gas–
bubbly oil can appear. For all these conditions the present model
was tested. In Fig. 4, the predicted and experimental pressure gra-
dients are compared. The predictions are in agreement with the
experimental data, in fact the maximum error (6.52%) is reached
when gas, oil and water superficial velocities (vsg, vso, vsw) are
0.06, 0.02 and 0.3 m/s, respectively. A complete error description
for different flow conditions is given in Table 2.



Table 2
Error of the pressure drop prediction for different flow conditions.

vsg (m/s) vso (m/s) vsw (m/s) vsg/vso Error (%)

0.05 0.07 0.5 0.712 0.55869
0.041 0.04 0.3 1.02 1.97919
0.048 0.04 0.5 1.2 0.86175
0.042 0.02 0.5 2.1 1.13767
0.06 0.02 0.3 3 6.52959

O. Cazarez et al. / International Journal of Multiphase Flow 36 (2010) 439–448 443
The effect of the gas–oil drag force on the pressure gradient is
also presented in Fig. 4. It is shown that without the gas–oil drag
force, the model predictions have notable deviations respect to
the experimental data (3.38% average error) in comparison with
those predictions, where the gas–oil drag force was included
(2.21% average error). According to the work of Bannwart et al.
(2005) for a gas–oil ratio of 3.0 also the bubbly gas–intermittent
oil flow pattern may be present, this means that such conditions
correspond to a transition zone. This is maybe the reason because
the maximum deviation occurs when the gas–oil ratio takes a va-
lue of 3.0.

Fig. 5a shows the transient volumetric fraction profiles for each
phase. The maximum value reached of water volumetric fraction
was approximately 0.87, which is larger than the oil and gas volu-
metric fractions because the water is the dominant continuous
phase according to the experimental data given by Bannwart
et al. (2005).

Fig. 5b shows the velocity profiles. As it was expected the gas
velocity is the largest one because its density is the smallest one.
Fig. 5. Transient behavior of: (a) volumetric fractions, (b) velocities, (c) pressu
The water velocity is the smallest one, because its density is larger
than the oil density (qw = 996 kg/m3, qo = 971 kg/m3) and there are
two dispersed phases. This was not observed by Hatta et al. (1998)
for a solid–gas–liquid three-phase flow due to the solid density
(qs = 2540 kg/m3). Fig. 5c shows the transient pressure profiles.

On the other hand, the gas temperature profile (Fig. 5d) pre-
sented a maximum deviation of 2 K from the initial condition
(298.2 K) for a short simulation time. However, when the time in-
creases, a constant value of 298.2 K is reached. This was an ex-
pected result because it was considered adiabatic flow.

In order to improve the modeling of bubbly three-phase flow,
the gas–oil drag force has to be considered, besides the well-
known gas and oil drag forces. In the present work to include the
gas–oil drag force into the model, a new expression is proposed,
which was obtained modifying the expression given by Michele
and Hempel (2002) (see Appendix A). The model increased its
numerical stability when this force was taken into account.

Fig. 6 shows the comparison among different drag forces. It was
found that the gas–oil drag force (FDgo) has the same order of mag-
nitude that the oil drag force (FDo) and they are smaller than the
gas drag force (FDg) when the gas, oil and water superficial veloci-
ties take values of 0.06, 0.02 and 0.3, respectively. However, when
gas, oil and water superficial velocities were modified (0.05, 0.07
and 0.5) a notable change was observed, since oil and gas–oil drag
forces increased approximately twice as much, meanwhile the gas
drag force decreased. Although changes are evident when the
superficial velocities were modified, the gas, oil and gas–oil drag
forces kept the same qualitative behavior at different flow condi-
tions, where the three-phase bubbly flow appears.
re and (d) temperature; for vsg = 0.06 m/s, vso = 0.02 m/s and vsw = 0.3 m/s.



Fig. 7. Effect of the FDgo on the gas and oil velocity profiles for vsg = 0.07 m/s,
vso = 0.05 m/s and vsw = 0.5 m/s.

Fig. 8. Effect of the FDgo on the oil and gas volume fraction profiles for vsg = 0.07 m/s,
vso = 0.05 m/s and vsw = 0.5 m/s.

Fig. 6. Comparison among drag forces.
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Fig. 7 shows the gas and oil steady-state velocity profiles with
and without the gas–oil drag force. It can be seen that the gas
phase is faster than the oil phase for both cases. This was also ob-
served by Mitra-Majumdar et al. (1997) for a solid–gas–liquid
three-phase flow. This was expected because of the large difference
of densities between the phases. The inclusion of the gas–oil drag
force into the model causes that the gas velocity decreases. The
reason for this observation is that the presence of the oil droplets
has a large hindrance to the motion of the gas bubbles. However,
due to the drag of the gas phase on the oil phase, oil velocity in-
creases when the gas–oil drag force is included into the model, this
causes that the oil volume fraction decreases (see Fig. 8) and the
gas volume fraction tends lightly to increase. The same qualitative
behavior of gas and oil volume fraction was observed under differ-
ent flow conditions, where the three-phase bubbly flow appears.
The sharp variations of the oil and gas volume fractions at the inlet
region are perhaps due to the arbitrary choice of volume fraction at
the inlet. This arbitrariness is due to the fact that Bannwart et al.
(2005) only measured superficial velocities of the phases.

6. Conclusions

A two-fluid model for three-phase bubbly gas–bubbly oil flow
in vertical pipes has been presented. As is known, the key issue
for the accurate modeling of multiphase flow is to specify the ade-
quate closure relationships. For this reason, the gas–oil drag force
was included in the proposed model. When such force was in-
cluded, it was observed that: (1) the numerical stability was in-
creased, (2) the gas–oil drag force had the same order of
magnitude than the oil drag force and they were smaller than
the gas drag force and (3) the pressure, gas and oil velocities and
gas and oil volume fraction profiles were affected.

If the gas–oil drag force is not taken into account the oil velocity
is smaller and the gas velocity is larger, whereas the oil volume
fraction is larger and the gas volume fraction is smaller. The gas–
oil drag force had not been used in previous works for modeling
heavy oil–gas–water in pipes. According to the results obtained
in this work it can be concluded that the use of this force enhances
the capabilities of the mathematical model to predict pressure
drop, volume fraction and temperature profiles of a three-phase
oil–gas bubbly flow.

Regarding the pressure drop predictions, it was found that the
values calculated with the model are in agreement with the exper-
imental data reported in the literature. The maximum error value
was lower than 7%.

It is expected that this model will be of benefit for further stud-
ies of heavy oil–gas–water transient multiphase flow.
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Appendix A

A.1. Drag forces

In the present study, the expression used for the drag force act-
ing on a gas particle (FDg) under steady-state conditions is given in
terms of the drag coefficient based on the relative velocity:

FDg ¼ egqwCDg
3
8
jvg � vwjðvg � vwÞ

Rpg
ðA-1Þ

According to Padial et al. (2000) the drag coefficient, CDg, is gi-
ven as follows:
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CDg ¼ 1þ 24
Re
þ 6

1þ
ffiffiffiffiffiffi
Re
p

� �
ðA-2Þ

The gas particle ratio Rpg is given by:

Rpg ¼
3Vpg

4p

� �1=3

ðA-3Þ

The drag force transferred from the water to the oil is given by:

FDo ¼ eoqwCDo
3
8
jvo � vwjðvo � vwÞ

Rpo
ðA-4Þ

where the drag coefficient, CDo, is (Clift et al. (1978)):

CDo ¼
24
Re ð1þ 0:15Re0:687Þ; ðRe 6 1000Þ
0:44; ðRe > 1000Þ

(
ðA-5Þ

The Reynolds number is given by:

Re ¼ 2qwjvw � vojRpo

lw
ðA-6Þ

where lw is the water viscosity and Rpo is the oil particle ratio given
by:

Rpo ¼
3Vpo

4p

� �1=3

ðA-7Þ

To calculate the momentum transfer between two dispersed
phases (gas and oil), the drag law modified from the work of Mic-
hele and Hempel (2002) was used:

FDgo ¼ �FDog ¼ eoqgCDgol
3
8
ðvo � vgÞ

Rpo
ðA-8Þ

This expression is implemented as an additional source term in
the momentum equations of the gas and oil phases. In Eq. (A-8)
CDgol ¼ CDgojvo � vg j was used as a fitting parameter and was set
constant to 138 m/s during all calculations carried out. This value
may be not considered as a real physical settling velocity but is
merely a fitting parameter.

Michele and Hempel (2002) found their expression from exper-
imental data for a three-phase flow of solid particles (plexiglas
granules, 1200 kg/m3), water and air bubbles. In this work, a
three-phase flow of crude oil (971 kg/m3), water and air bubbles
was modeled. The oil drops were considered perfectly spherical,
and then they have a behavior similar to solid particles. Michele
and Hempel (2002) reported a value for the fitting parameter of
118 m/s, whereas in this work it takes a value of 138 m/s. The dif-
ference between these values is attributed to the difference be-
tween the densities, and sizes of the solid particles and drops,
and to the elastic behavior of the drops. However, it is clear that
to have a better estimation of the drag force between oil drops
and gas bubbles, it must be obtained from experimental data. This
is a topic to be investigated.

A.2. Virtual mass force

The virtual mass force is the force required to accelerate
the apparent mass of the surrounding phase when the relative
velocity changes. According to Lahey (1992), the most common vir-
tual mass force terms for gas phase as well as oil phase are given
by:

Fvm g ¼ egqwCvm g
@vg

@t
� @vw

@t
þ vg

@vg

@z
� vw

@vw

@z

� �
ðA-9Þ

Fvm o ¼ eoqwCvm o
@vo

@t
� @vw

@t
þ vo

@vo

@z
� vw

@vw

@z

� �
ðA-10Þ
where Cvm g and Cvm o denote the virtual mass coefficients of gas
and oil phases, respectively, given by Ransam et al. (1981):

Cvm g ¼
0:5 1þ2eg

1�eg

� �
; ð0 6 eg < 0:5Þ

0:5 3�2eg

eg

� �
; ð0:5 6 eg < 1Þ

2
64

3
75 ðA-11Þ

Cvmo ¼ 0:5 ðA-12Þ
A.3. Frictional force between mixture and pipe wall

In the present model, the gas-wall friction and the oil-wall fric-
tion are neglected, and the friction force is represented by the mix-
ture-wall interaction given by Cazarez-Candia et al. (2009):

sw ¼
1
2

fmqmv2
m

1
d

ðA-13Þ

The friction factor needed to estimate the friction force can be
calculated as:

fm ¼ CðReÞn ðA-14Þ

The Reynolds number is given by:

Re ¼ qwvmd
lw

ðA-15Þ

where C and n are taken as 0.2146 and �0.25, respectively, and d is
the pipe diameter. These values were used only as fitting parame-
ters and were set constant during all calculations.
Appendix B

According to Lahey and Drew (1989) the conservation equa-
tions can be expressed as:

(i) Mass equations
@ðqkekÞ
@t|fflfflfflffl{zfflfflfflffl}

Accumulation

þr � ðqkekvkÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Inertial

¼ Ck|{z}
Interfacial mass transfer

; k ¼ o; g;w ðB-1Þ

In this work, the interfacial mass transfer among phases was ne-
glected, since phase change (condensation or evaporation) phe-
nomena did not occur. Oil and water can be supposed as
incompressible phases since their compressibility is small. Under
these conditions the one-dimensional equation for oil and water
phases can be written as:

@ðqoeoÞ
@t

þ @ðqoeovoÞ
@z

¼ 0 ðB-2Þ

@ðqwewÞ
@t

þ @ðqwewvwÞ
@z

¼ 0 ðB-3Þ

However, for the gas phase the density is function of the tem-
perature and the pressure, then Eq. (B-1) can be expressed as:

eg
@qgðTg ; PgÞ

@t
þ vg

@qgðTg ; PgÞ
@z

� �
þ qg

@eg

@t
þ vg

@eg

@z

� �
þ egqg

@vg

@z
¼ 0

ðB-4Þ

where the temporal and spatial derivatives are given by:

@qgðTg ; PgÞ
@t

¼ 1
c2

g

@pg

@t
�

qg

Tg
þ

qg

Z
@Z
@Tg

� �
@Tg

@t
ðB-5Þ
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@qgðTg ; PgÞ
@z

¼ 1
c2

g

@pg

@z
�

qg

Tg
þ

qg

Z
@Z
@Tg

� �
@Tg

@z
ðB-6Þ

Here cg represents the speed of sound into the gas phase and Z is
the gas compressibility factor.

Substituting Eqs. (B-5), (B-6) into Eq. (B-4) and considering ideal
gas (Z = 1), the gas mass equation becomes as follows:
eg

qgC2
g

@P
@t
þvg

@P
@z

� �
� eg

Tg

@Tg

@t
þvg

@Tg

@z

� �
þ @eg

@t
þvg

@eg

@z

� �
þeg

@vg

@z
¼0

ðB-7Þ

(ii) Momentum equations

The general momentum equation is given by Lahey and Drew
(1989):
@ðqkekvkÞ
@t|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Accumulation

þr � ðqkekvkvkÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Inertial

¼ � ekr � ðPkÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Pressure

� DPkiS
000
ki|fflfflffl{zfflfflffl}

Interfacial pressure gradient

� DPkwS000kw|fflfflfflfflffl{zfflfflfflfflffl}
Wall-phase pressure gradient

þ r � ½ekðsk þ sRe
k Þ�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Viscous and Reynolds shear stresses

þ ekqkg|fflffl{zfflffl}
Gravity force

þ CkvC
ki|fflffl{zfflffl}

Interfacial mass transfer

þ Mnd
ki þMd

ki|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Interfacial forces

þ Mnd
kw þMd

kw|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Wall-phase forces

þ ski � S000ki|fflfflffl{zfflfflffl}
Interfacial shear stress

ðB-8Þ
where

Mnd
ki ¼ Fvmk þ FLk þ FRk; k ¼ o; g;w ðB-9Þ

Md
ki ¼ FDk þ FDkq; k ¼ o; g;w; q ¼ g; o;w; k – q ðB-10Þ

Md
kw ¼

skw

DHk
; k ¼ o; g;w ðB-11Þ

Mnd
kw ¼ FBk þ FLLk; k ¼ o; g;w ðB-12Þ

The non-drag force on the wall, Mnd
kw, includes Basset-type (FBk)

and lateral lift-type (FLLk) forces. The functional form of this term is
@½ekqkðek þ eT
kÞ�

@t|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Accumulation

þr � ½ekqkðek þ eT
kÞvk�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Convection

¼ �Pki

@ek

@t|fflfflfflfflffl{zfflfflfflfflffl}
Interfacial pressure

þ @ðekPkÞ
@t|fflfflfflffl{zfflfflfflffl}

Pressure

� r � ½ekðq00k þ q00Tk Þvk�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Phase and turbulent heat fluxes

þ r � ½ekðsk þ sRe
k Þ � vk�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Viscous and Reynolds shear stresses

þ ekqkg � vk|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Gravity force

þ ekq000k|ffl{zffl}
Heat generated

þ Ckeki|ffl{zffl}
Mass transfer

þ Mnd
ki � vnd

ki|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Work due to non-drag interfacial forces

þ q00kiA
000
i|fflffl{zfflffl}

Interfacial heat flux

þ Md
ki � vd

ki|fflfflfflfflffl{zfflfflfflfflffl}
Work due to drag interfacial forces

þ vs
ki � ski � S000ki|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Work due to interfacial shear stress

þ q00kwA000kw|fflfflffl{zfflfflffl}
Wall heat flux

� Ckh
D~pd

k

qk
ii|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Drag interfacial pressure difference

ðB-16Þ
not well known and thus it is normally neglected (Lahey and Drew,
1989). In this work, the lift (FLk), radial (FRk) forces were neglected,
the last one because the oil drops and gas bubbles sizes are con-
stant. Since the phase distribution around the pipe circumference
is homogeneous S000kw ¼ 0. There are not interfacial pressure gradi-
ent, interfacial shear stress and interfacial mass transfer among
phases. The viscous and Reynolds shear stresses are normally small
and often neglected (Nikitopoulos and Michaelides, 1995; Lahey,
1992; Lahey and Drew, 1989). Since the dispersed phases are oil
and gas, ðFvmw; FDw; FDwg ; FDwoÞ ¼ 0.

Under these conditions the one-dimensional equation for each
phase can be written as:
@ðqgegvgÞ
@t

þ
@ðqgegv2

gÞ
@z

þ eg
@P
@z

¼ �egqgg sin h� FDg � FDgo � Fvmg ðB-13Þ

@ðqoeovoÞ
@t

þ @ðqoeov2
oÞ

@z
þ eo

@P
@z

¼ �eoqog sin h� FDo þ FDgo � Fvmo ðB-14Þ
@ðqwewvwÞ
@t

þ @ðqwewv2
wÞ

@z
þ ew

@P
@z

¼ �ewqwg sin hþ FDg þ FDo �
swSw

A
ðB-15Þ

where ðFDoÞ is the drag force transferred from the continuous phase
to oil drops, ðFDgoÞ is the gas–oil drag force and ðFDgÞ is gas drag
force.

(iii) Energy equations

The general energy equation is given by Lahey and Drew
(1989):
According to Lahey and Drew (1989), the turbulent kinetic
energy ðeT

kÞ is not normally a very important term in the energy
equation. In any event, it is currently not well known how to model
this parameter, thus it is usually neglected. The heat flux ðq00kÞ, given
by the Fourier’s law, is relatively small and usually neglected. The
turbulent heat flux ðq00Tk Þ is normally neglected in the engineering
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analyzes of two-phase flow. The interfacial stress tensor ðskiÞ is
either neglected since its energy contribution is relatively small.
The interfacial drag forces can contain energy fluctuations which
are small, for this reason they are neglected. The interfacial pres-
sure gradient is also neglected.

Into the model there is not mass interchange due to phase
change or chemical reaction among two immiscible liquids (oil
and water) and air, and then the heat exchange between the
phases was ignored. Regarding to the heat transfer to/from the sur-
roundings, it was not included into the model since there is not
temperature gradient between the surroundings and the three-
phase flow, this because the simulated experiments were done at
ambient temperature. Then, the one-dimensional energy equation
can be expressed as:

@½ekqkek�
@t

þ @½ekqkekvk�
@z

¼ ek
@Pk

@t
þ ekqkvkg cos / ðB-17Þ

Eq. (B-17) can be written as:

ek
@ðekqkÞ
@t

þ @ðekqkvkÞ
@z

� �
þ ekqk

@ek

@t
þ vk

@ek

@z

� �

¼ ek
@Pk

@t
þ ekqkvkg cos / ðB-18Þ

Substituting the Eq. (B-1) without the mass transfer term into
the Eq. (B-18), the following equation is obtained:

ekqk
@ek

@t
þ vk

@ek

@z

� �
¼ ek

@Pk

@t
þ ekqkvkg cos / ðB-19Þ

where ek is the specific energy defined as:

ek ¼ hk þ
v2

k

2
ðB-20Þ

where its spatial and temporal derivatives are expressed by:

@ek

@t
¼ @hk

@t
þ vk

@vk

@t
ðB-21Þ

@ek

@z
¼ @hk

@z
þ vk

@vk

@z
ðB-22Þ

Substituting Eqs. (B-21) and (B-22) into Eq. (B-19), and dividing
by ðekqkÞ:

@hk

@t
þ vk

@vk

@t
þ vk

@vk

@z
þ v2

k
@vk

@z
¼ 1

qk

@Pk

@t
þ vkg cos / ðB-23Þ

Specific enthalpy can be written as a function of temperature
and pressure,

@hk

@t
¼ Cpk

@Tk

@t
� gkCpk

@Pk

@t
ðB-24Þ

@hk

@z
¼ Cpk

@Tk

@z
� gkCpk

@Pk

@z
ðB-25Þ

where gk is Joule–Thomson coefficient defined as:

gk ¼ 0; k ¼ g ðB-26Þ

gk ¼ �
1

Cpkqk
; k ¼ o;w ðB-27Þ

For the gas phase, substituting Eqs. (B-24), (B-25) and (B-26)
into the Eq. (B-23), the gas energy equation is:

Cpg
@Tg

@t
þ vg

@Tg

@z

� �
þ vg

@vg

@t
þ vg

@vg

@z

� �
� 1

qg

@P
@t

¼ �vgg cos / ðB-28Þ
For the oil and water phases, substituting Eqs. (B-24), (B-25)
and (B-27) into the Eq. (B-23), the oil and water energy equations
are:

eoqoCpo
@To

@t
þ vo

@To

@z

� �
þ eoqovo

@vo

@t
þ vo

@vo

@z

� �
þ eovo

@P
@z

¼ �eoqovog cos / ðB-29Þ
ewqwCpw
@Tw

@t
þ vw

@Tw

@z

� �
þ ewqwvw

@vw

@t
þ vw

@vw

@z

� �
þ ewvw

@P
@z

¼ �ewqwvwg cos / ðB-30Þ

The model was formulated for a flow without phase change and
without heat transfer between it and its surroundings. Then one
expects that the phases (oil, water and air) have constant temper-
atures. In fact this occurs for the oil and water, however, due to the
gas compressibility, its temperature can change. Then with the
idea of to take into account this phenomenon, the model was for-
mulated as a thermal model.

In a thermal model the density is a function of temperature and
pressure, but when the change of pressure or the compressibility is
small, the flow can be considered as incompressible, and then oil
and water have constant density. Under this condition the density
is independent of the pressure and it represents the hydrodynamic
pressure instead of the thermodynamic pressure.

On the other hand, the gas is a compressible phase then its pres-
sure is a thermodynamic pressure, so an equation of state was used
to describe the relation among pressure, temperature and density
for the gas. However, it was supposed that there was no interfacial
gradient pressure and that the bubbles were perfectly spherical,
then the pressures of the three-phases were considered equals,
but with different temperatures.
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